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Improved energy lower bound for the N-fermion system 
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Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, 
USSR 

Received 10 January 1980 

Abstract. The exact analytical solution of inhomogeneous differential equations, resulting 
from the improvement of the known methods due to Post and Hall, is presented. As an 
illustration, the energy lower bounds of N-fermion systems with oscillator and gravitational 
interaction are calculated and the results compared with the earlier data. 

1. Introduction 

The known energy-lower-bound methods due to Hall and Post for N-fermion systems 
have recently been modified by Manning (1978) and by Balbutsev and Mikhailov 
(1977, 1979), in which the original equations were derived and solved using series 
expansions of limited applicability. The exact solution of these equations is found here. 
As an illustration, the energy lower bounds of N-fermion systems with oscillator and 
gravitational interaction are calculated. The results are compared with the earlier data 
and some mistakes in Manning’s (1978) paper are revealed. 

2. Hall method 

To estimate the energy lower bound of the N-fermion system by the modified Hall 
method one has to solve the equation 

( h ( P ) - E ) + ( P ) = P S ( P )  (1) 
with the constraint +(O)  = 0. 

Here h ( p ) = - ( h 2 / 2 ~ ) A + ( N / 2 ) v ( p ) ,  F =mA, m is the mass of a particle, A is a 
parameter depending on the definition of relative coordinates p (in our case A = $), U is a 
two-particle interaction and p is an indefinite multiplier to be found below from the 
boundary condition. The lower bound is a sum of N - 1 lowest energy levels 

To solve the inhomogeneous equation (1) it is natural to use the Green function 
method. First consider the one-dimensional problem 

(2) (h  ( x )  - E ) + ( x )  = Q (X 1. 

+b) = a l c p l ( x ) + ~ Z ( P Z b ) + f ( X )  

The general solution of this inhomogeneous second-order differential equation is 

where f(x) is its particular solution. The functions cpl(x) and cp2(x) are linearly 
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370 E B Balbutsev 

independent solutions of the homogeneous equation 

[h(X)-€]lcp(x)=O. 

The Green function of this equation is (Baz’ et a1 1971) 

when x >x‘  
when x < X I .  

cp 1 (x )(P2(x’) 
P2(X )cpl (XI)  

G(x, x‘) = ( 
Using G(x, x’) one can find the particular solution of the inhomogeneous equation ( 2 ) :  

m 

f(x) = G(x, x’)Q(x’) dx’. 

The factors a1 and a2 are defined by normalisation and boundary conditions. 

through oscillator forces: 
For demonstration purposes we shall solve the problem of N fermions interacting 

(3) 

The linearly independent solutions of the corresponding homogeneous equation are the 
well-known even and odd oscillator functions 

where F is the confluent hypergeometrical function, 6 = x ( ~ y N / h ~ ) ” ~ ,  E = 
e ( f 1 ~ - y N / 4 ~ ) ~ ”  = ehw/2 .  The general solution of equation ( 3 )  is 

= ~ i ~ i ( x )  + a 2 c p z b )  + P G b ,  0) 

where 

0 when x > 0 
P2(X 1 when x < 0. 

Using the constraint $(O) = 0 we have a 1  = 0. Putting the wavefunction at x = k m  equal 
to zero one finds (3  - e ) / 4  = -n. This condition gives the energy spectrum: 

G(x, 0) = { 

E = ( 4 n + 3 ) h w / 2 = [ ( 2 n + l ) + ; ] h w  = ( k + $ ) h w ,  k = 1 , 3 , 5  , . . . .  (4) 

Clearly it is this part of the spectrum which corresponds to odd states of the usual 
oscillator. The Hamiltonian is symmetric under inversion, so the wavefunction must be 
either odd or even, that is $(-x) = *$(x). Hence p may take two values: 

(i) p = 0 when the wavefunction is odd; then 

@ ( X I  = f f2P2(X) ,  

(ii) p = -2a2 when the wavefunction is even; then 

$(x) = { a m ( x ) ,  x > o  
- ff 2P2b ), x < o .  

The coefficient aL is defined by the nornialisation condition 

2 a i  jOm q:(x) dx = 1. 
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So we have found that the set of eigenvalues of equation (3) consists of the levels, 
corresponding to odd states of the usual harmonic oscillator, every level being doubly 
degenerate. 

Manning (1978) came to the same conclusion in quite a different way. He has found 
odd wavefunctions (together with corresponding energy levels) as solutions of equation 
(3) with p = 0. To obtain its eigenvalues at p # 0 he calculated the roots of the equation 

- f (2n- l ) ! !  1 
= O  -- 

n = ~  e2,-e ,,=o (2n)!! 4 n + l - e  

where r p z n  is an even oscillator wavefunction. This series converges, though very 
slowly. For the roots of the equation one can deduce analytically the expression 

e i = 4 i + 3  

which coincides with equation (4). 
The procedure by Manning is useless in the case of the three-dimensional oscillator 

- ~ ) 4 ( r )  = @ ( r )  

for one must handle the divergent series 

f (2n + l ) ! !  = 0. 
f l = ~  (2n)!! 4 n + 3 - e  

Let us solve the same problem by the Green function method, although a more simple 
and obvious solution is possible in this case (see appendix A). The Green function of a 
three-dimensional Schrodinger equation satisfies the relation (Baz’ et a1 197 1) 

Here Ylm is the spherical function, GEI is the Green function of the radial Schrodinger 
equation 

(;iFi--- d2 ‘(‘+’) 5 2 + 2 E ) R ( 5 ) = 0  
t2 

where 5 = r(gw/h)”2, E = E/hw, w = (Ny /F)”2 .  Two of its linearly independent 
solutions are 

Hence 
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The particular solution of the inhomogeneous equation ( 5 )  is 

The general solution is 

To fulfill the constraint $ ( O )  = 0 one must put b = 0, p = 0 ,  I # 0. The condition $ ( r )  + 0 
when r + CO determines the eigenvalues 

1 # 0. E = 2n + 1 +;, 
So the required energy spectrum coincides with that of the usual three-dimensional 
oscillator, but all the s levels must be omitted. This result differs from that of Manning 
(1978), due to which one has to raise each s level by 1 Aw, but not to omit it. Apparently, 
he made a mistake in handling the divergent series (6). The results of calculations are 
presented in tables 1 (one-dimensional oscillator) and 2 (three-dimensional oscillator). 

Table 1. The exact energy of the one-dimensional system of N fermions with the oscillator 
interaction and its lower bounds calculated by the modified (M) and usual methods by Hall 
(1967), by the Post (1956) method, and by the modified and usual methods of Carr and Post 
(1968). The energy is given in units of ( f1~yN/2m)”~ = hw/J3. 

N 2 3  4 5 6 7 8 9 10 

Exact 3 8 15 24 35 48 63 80 99 
(M)Hall 2.6 5.2 11.3 17.3 2659 36.4 49.4 62.4 78.8 

Post 3 6  9 12 15 18 21 24 27 
(M) Carr- 3 5.2 10.6 15.8 24.0 32.1 43.1 54.0 67.8 
Post 
Carr-Post 1 3.5 7.4 12.7 19.4 27.5 37.0 48.0 60.4 

Hall 0.9 3.5 7.8 13.9 21.7 31.2 42.4 55.4 70.2 

Table 2. The energy lower bounds of the three-dimensional system of N fermions with the 
oscillator interaction. The bounds are calculated by the modified (M) and usual methods by 
Hall (1967), by the Post (1956) method and by the modified and usual methods of Carr and 
Post (1968). The energy is given in units of (h2yN/2m)”2 = hw/J3. 

N 2 

(M) Hall 4.3 
Hall 2.6 
Post 5 
(M) Carr-5 
Post 
Carr-Post 3 
Exact 5 

3 4 5 6 7 8 9 10 

8.7 13.0 19.1 25.1 31.2 37.2 43.3 51.1 
6.9 1153 15.6 2147 27.7 33.8 39.8 45.9 

10 15 20 25 30 35 40 45 
8.7 12.3 17.4 2255 27.5 32.5 37.5 44.0 

6.9 10.6 14.2 19.4 24.4 29.5 34.5 3955 
10 15 22 29 36 43 50 57 

11 

58.9 
52.0 
so 
50.4 

44.5 
66 

12 

66.7 
59.8 
5s 
56.9 

51.0 
7s 
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A further example is the three-dimensional system of N fermions coupled by 
gravitational forces: 

Here one can use the known results. The Green function of the radial Schrodinger 
equation 

can be expressed (Baz' et a1 1971) by the Whittaker function W,,,(,$) (Whittaker and 
Watson 1963) and gamma function 

where 6 = 2 r ( - 2 p ~ / h ~ ) * / ~ ,  K = aN/( -8Eh2/F)1/2 ,  v = 1 +;. Only one of two linearly 
independent solutions of this equation has the required behaviour at the origin: 

Rl(r )  = e x p ( - ~ / 2 ) ~ ' ' l ~ ( 1 -  K + I, 21 + 2;  5) .  

The general solution of the inhomogeneous equation (7) is 

To fulfill the constraint $(O) = 0 one has to put a = 0 if 1 = 0 and P = 0 as WK,1/2(5)/5 = 
In 5 when 5+0. The wavefunction $ ( r ) + O  at r + c o  only if Z + V - K  = -n. This 
equation defines the energy spectrum of the system: 

1 k N 2 a 2  
E,i = - 1 f . O .  

1 

( n + 1 + 1 ) 2  8h2 ' 

This coincides with the spectrum of the usual Coulomb problem, all the s levels being 
omitted. This result differs from that of Manning (1978). For the s-level energy he 
takes the roots of the equation 

(8) 
1 /RnO(O)l2 - 
n = ~  Eno-e 

where Rno(r) is the radial Coulomb wavefunction of the s state. Here the mistake is 
evident: the integral over the continuous spectrum should be added to the sum over the 
discrete levels in equation (8). This is necessary since the bound states alone do not 
form the complete basis. The results of the calculation are presented in table 3. 

3. Carr-Post method 

This method has been improved by Balbutsev and Mikhailov (1977, 1979). To 
determine the energy lower bound by this method one has to solve the variational 
problem 

s((+l4$)-w$l$)) = 0 
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Table 3. The energy lower bounds of the system of N fermions coupled by ‘gravitational’ 
forces. The bounds are calculated by the modified (M) and usual methods by Hall (1967), by 
the Post (1956) method, and by the modified and usual methods of Carr and Post (1968). 
The energy is given in units of ( -mN2a2/8h2) .  

N 2 3  4 5 6 7 8 9 I 0 1 1 1 2 1 3 1 4 1 5  

(M) Hall 0.2 0.33 0.5 0.6 0.65 0.72 0.80 0.87 0.94 1.02 1.09 1.13 1.18 1.22 
Hall 0.7 0.8 1.0 1.2 1.33 1.41 1.48 1.56 1.63 1.70 1.78 1.85 1.93 2.0 
Post 0.1 0.25 0.4 0.5 0.625 0.750 0.875 1.00 1.13 1.25 1.38 1.50 1.63 1.75 
(M) Carr- 0.1 0.33 0.6 0.7 0.81 0.93 1.05 1.16 1.28 1.39 1.50 1.57 1.64 1.70 

Carr-Post 0.5 0.8 1.1 1.4 1.67 1.81 1.94 2.07 2.20 2.32 2.44 2.56 2.68 2.80 
Post 

where 

m is the mass of a particle, pi = ri - rl,  ri is the ith particle coordinate, 4@2, p3, . . . , pN) 
is the trial wavefunction which is antisymmetric relative to the permutation of its 
coordinates pi. E is the necessary energy; here it is the Lagrange multiplier by which 
one takes into account the normalisation condition (+I$) = 1. 

Balbutsev and Mikhailov (1977, 1979) have proposed the additional constraint on 
the trial wavefunction: 

This is natural for the case of the wavefunction of the fermion system, as the equality 
p i  = 0 means that the coordinates of the ith and first particles coincide. It is convenient 
to write this constraint in a form of the orthogonality condition of the fi and S functions: 

It should be noted that this equation determines the continuum of conditions, as it must 
be satisfied at any values of all the coordinates p k ( k  # i). Hence, in order to take into 
account equation (9) in a variational procedure one needs the continuum of the 
Lagrange multipliers P,  that is, they will be functions of the variables p k ( k  # i): 

P = Pip29 * * 9 pi-1, Pit19 . 9 PN). 

Now the variational problem is 

From the latter one deduces the basic equation of the modified Carr-Post method: 
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How is this equation solved? In the case when all the coordinates pi # 0, it reduces 
to the usual Schrodinger equation 

N 

i = 2  
h(Pi)+(PZ, .  - P N ) = E ~ ( P ~ ,  - 9  P N ) .  

Its solution is well known: 

‘? 4a ( P Z ,  a , P N )  = det cpa, (Pi ) ,  E, = E,, h ( ~ i ) c ~ n  (P i )  = ~ n q n  (Pi) .  (1 1) 
i = 2  

Let us consider the behaviour of 4, as a function of, say, the coordinate P k .  We have 

It will be seen that cp,,(O) = 0 for 4, must be supposed continuous. So the expression 

Gct(P2, * - 3 P N )  = det(paz(P2)(Pa3(P3) * * c p ~ l . v ( P N ) )  (12) 

is true at all values of the coordinates pl(i = 2,3, . . . , N ) ,  the ‘one-particle’ wavefunc- 
tion cp,, vanishing at the origin. Let us now substitute equation (12) into equation (lo),  
the P k  being arbitrary and all the other coordinates differing from zero: 

[h  ( P k )  - E q I ( P q ( P k ) A k , Z +  [h  ( P k )  E q ] ( P q ( P k ) A k , 3  +. * - + [ h ( P k )  - E a j v ] ( P m ~  ( P k 1 A k . N  

= a(Pk)P(P2, * .  9 Pk-1, P k + l , .  9 P N ) .  

Here A k , z  are the signed minors of the element C P U , ( & )  of the determinant (12). In this 
equation P ( p )  may differ from zero only if 

[ h b k ) - E m , ] ( P a , ( P k )  = c a , a ( P k )  (13) 

and, of course, if caC f 0. Hence, not only solutions of equation (11) but also those of 
inhomogeneous equation (13) may be used as ‘one-particle’ wavefunctions. However, 
it is more convenient to unite these equations. For this one must suppose that in 
equation (13) c, may take any value. We have indicated in the previous section how to 
solve such equations. 

The results of the energy lower bound calculations for the one- and three- 
dimensional systems of N fermions interacting by the oscillator forces and fos the 
three-dimensional system of N fermions interacting by ‘gravitational’ forces are 
presented in tables 1 ,2 ,  and 3. There one can comp.are the modified Carr-Post method 
with the original one and with the methods of Hall. 

4. Conclusion 

Two modified methods of the lower bound estimates of the N-fermion system ground- 
state energy were considered. The exact analytical solution of inhomogeneous 
differential equations of the methods were presented, and illustrative calculations 
carried out. The results of Manning (1978) and Balbutsev and Mikhailov (1977,1979) 
for the one-dimensional harmonic oscillator were confirmed. However, in the case of 
the three-dimensional harmonic oscillator and of ‘gravitational’ forces our results differ 
from those of Manning (1978). Possible mistakes of Manning (1978) were shown. 
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Appendix 

Let us write equation ( 5 )  in Cartesian coordinates: 

This equation is homogeneous everywhere except one point, the origin. This means 
that it may be treated as the usual Schrodinger equation, its solutions being subjected to 
some boundary condition at this point. We have 

To clear up the role of the inhomogeneity, let us substitute this solution into the initial 
equation and integrate over some coordinate, for example x, in the (infinitely small) 
vicinity of zero. Integrals of the type j_t," cp(x) dx and j_'," x2cp(x) dx must vanish, 
otherwise one has to suppose cp ( x )  - S(x) ,  which contradicts the condition $(O, 0,O) = 
0. So the integration gives 

A2 
2P 

- - [ c p ' ( + O )  - c p ' ( - O ) l c p ( Y ) c p ( Z )  = P S ( Y ) S ( Z ) .  

If cp'(+O)=cp'(-0), that is, the derivative cp'(x) is continuous at x =0 ,  then p = O  
automatically. If cp'(+O) # cp'(-O),  then one obtains the equality cp(y)cp(z) = constant 
S ( y ) S ( z )  in contradiction of the condition $ ( O ,  0, 0) = 0. Hence, one must suppose 
p =o.  
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